If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2=-11c
We move all terms to the left:
c^2-(-11c)=0
We get rid of parentheses
c^2+11c=0
a = 1; b = 11; c = 0;
Δ = b2-4ac
Δ = 112-4·1·0
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-11}{2*1}=\frac{-22}{2} =-11 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+11}{2*1}=\frac{0}{2} =0 $
| 15x+8=9x+10 | | -8(d-7)=-44 | | 68+x=54+72 | | Y-1=1/6x-2/3 | | 31/60=x/1250= | | X/6+1+x/2=1+2x/3 | | 2v^2=-6v+8 | | 21+15x=33-9x | | 3=15+4q-12 | | 9n^2+7n-2=0 | | 0.0085939455484254+8.3086247953047*10^(-8)x=0 | | 0.0085939455484254+8.3086247953047E-8x=0 | | 2(x-5)+14=5x-3(x+8) | | 0=-6t^2+30t | | x+.06x=230 | | x=-1/3-4/5 | | -3h=-15-4h | | 5a-2B=-10 | | -20b-20=-15b+20-7b | | 25/19x=15 | | 9(w+4)=72 | | 3v-35=-7(v-5) | | 11u-6=3+2u | | 6x+6=9x+3 | | 2(v-9)=7v+32 | | 6=2k-70 | | 9m-8=-2+8m | | -10z=-9z-6 | | 2z+19=59 | | 7+10r=3r-7 | | -1-7b=-8+10b-10b | | 8w=7w-9 |